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LETTER TO THE EDITOR 

Fluctuations of interfaces and anisotropy 

Joel De Coninckt and Jean Ruiz 
Centre de Physique ThtoriqueS, CNRS, Luminy, Case 907, F-13288 Marseille Cedex 9, 
France 

Received 26 June 1987, in final form 2 November 1987 

Abstract. The mean square vertical displacement W' is considered for (1 + 1 )-dimensional 
interfaces of the SOS type which make an angle 0 with respect to the horizontal axis. It is 
proved that W' per unit horizontal length is proportional to the inverse of p y (  0 )  + p y " ( e ) ,  
where p is the inverse temperature, y ( 0 )  is the surface tension of the interface at angle 6 
and ~ " ( 0 )  is the second derivative of y with respect to its argument. This result establishes, 
on a microscopic basis, the validity of the corresponding formula proposed by Akutsu and 
Akutsu using thermodynamical arguments. 

The microscopic description of interfaces has been a subject of considerable activity 
during the last 30 years. In particular, several works have been devoted to the study 
of interface fluctuations. 

There are essentially two kinds of approach to describe the properties of interfaces. 
The first one, the so-called !oca1 free energy approach, rests upon a concentration 

profile p ( z )  (where z is the vertical direction) (Widom 1972, Rowlinson and Widom 
1982). It leads to a density profile width independent of the system size. However 
Abraham and Reed (1976) have shown that this prediction is not in agreement with 
the result obtained for the two-dimensional Ising ferromagnet. 

The second approach, based on capillary wave theory, introduced by Buff et a1 
(1965) and Weeks (1977), gives a precise prediction for the mean square displacement 
of the interface in the vertical direction. Let W2 denote this quantity. In its original 
form it was proposed that W 2  behaves like 

W21L- 1IPY (1) 
where y is the surface tension characterising the interface, /3 is the inverse temperature 
and L is the size of the interface. 

In an interesting piece of work, Abraham (1981) (see also Abraham and Reed 
1977) pointed out that an exact calculation within the two-dimensional Ising model 
leads to a different result: 

( 2 )  
The agreement between this result and capillary wave theory has been recovered 

by Fisher er a1 (1982). They realised that (1) only holds for isotropic media and derived 
heuristically the following correction for an interface parallel to the horizontal axis in 
the mean, taking into account anisotropic effects: 

W2/ L - l/sinh fly. 

W21L- 1IP(Y(O)+Y"(O)) (3)  

t On leave from: Universitt de  I'Etat, Facultt des Sciences, 7000 Mons, Belgium. 
$ Laboratoire Propre 7601. 
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where y (e )  is the surface tension for an  interface with average angle e with respect 
to the horizontal axis, y” (0 )  denotes the second derivative of y with respect to e 
considered at  0 = 0. 

Rather recently, a generalisation of this formula has been proposed by Akutsu and  
Akutsu (1986). On a thermodynamical basis they proposed the following equation: 

W ~ L -  I / P ( Y ( ~ ) +  Y ’ w )  (4) 

for an  interface which makes an  angle 8 in the mean with the horizontal axis. These 
authors showed by an  explicit calculation for one microscopic model the validity of 
their formula (4), and use it within the two-dimensional Ising ferromagnet where y (  e) 
is explicitly known (Abraham and Reed 1977). 

However, at least to our knowledge, a rigorous general proof of this result is still 
lacking. This is precisely the aim of this letter. Using statistical mechanical consider- 
ations, we establish hereafter the validity of equation (4) for (1  + 1)-dimensional models 
of the solid-on-solid type. 

Let us first define the class of models we consider by introducing a Hamiltonian 
which characterises a wandering interface: H ( h o ,  h ,  , . . . , h L ) ,  where h, denotes the 
height of the interface at  point i (there are therefore 110 overhangs). Typical examples 
are given by ( a )  the continuous SOS model: 

L - l  

H ( h o ~ h ~ ~ - . . ~  ~ L ) = - J  C Iht+l-hiJ where hi E R ,  J > 0 
0 

( b )  the restricted SOS model: 

and (c) the continuous Gaussian model: 
L -  I 

H ( h o ,  h i , .  . . , h L ) = - J  (h t+ i -h , )*  where h, E R, J > 0. 
0 

More generally, we shall consider hereafter the class of Hamiltonians 
I - I  

0 

where P ( x )  is an  even polynomial bounded from below. For this class of models, let 
us now introduce the surface tension at  angle e: y(8). Its statistical mechanical 
definition is given by 

+X +X 1 -- - -lim - log I-, dho . . . dh, 
PY(@) 
COS e L - ~  L 

xexp[ -PH(h , ,h , ,  . . . ,  hL)]6(h,)6(h,-Ltan 8) ( 5 )  
where 6 denotes the Dirac measure. 

evaluate the asymptotic behaviour of ( O <  a < 1, a L E N )  
To compute the fluctuations of the interface along the vertical axis, one has to 

( 1 / L ) ( ( # L L ) 2 )  

where 4, is the random variable associated to the difference between the interface and  
the straight line which makes an angle 8 with the horizontal axis (see figure l ) ,  i.e. 

4, = h, - i  tan e. 
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Figure 1. Vertical displacement of interface with respect to the straight line y = x tan 8. 

The mean value ( ) has to be computed with respect to the probability measure induced 
by ( 5 ) .  One therefore has to analyse the following quantity: 

- 1  

(4:) = [ W O . .  . -02 d d L  exp( -P P(41+1 - 4 +tan s))s(40)8(~~) ]  
-cc 

x 1-z W O . .  . [+E -a d h  4; exp( -P 2 P(4,+l - +tan ~ ) ) 6 ( 4 0 ) 6 ( 4 ~ ) .  

This is realised in the following theorem. 

Theorem. For (1 + 1)-dimensional interfaces ( h o ,  h , ,  . . . , hL)  with probability density 
proportional to 

exp( -P c P(lh,+, - hll)) 

where P ( x )  is an even polynomial bounded from below, the fluctuations of the interface 
along the vertical direction behave asymptotically as 

( 6 )  
1 1 

lim (( 
p ( y ( e ) + y " ( e ) )  cos3 e 

for an inclination of 8 in the mean and for any 0 < (Y < 1. 

Proo$ The proof proceeds in two steps. We shall first show that, as L+m, we have 

where 

q,(x)=exp[-PP(x+tan 8 ) + c g ]  dx 

and co is the solution of 

exp[ -pP(x +tan 0) + c ~ ]  dx 

t02 

xq,(x) dx = 0. L 
The second step will then be to show that 

1 1 
W', = 

p (  y(  e) + e)) COS' e' 
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First step of the prooJ Since 

with X, = +,, we shall have 

where 

(xkx/)= dx, . . . dx, exp( - p  c P(x, + tan e) ti x, 
--oc --& ) ( )I-' 

-m --I ( ) ( ) (I0) 

+m 

x dx, . . . J dxL xkx/ exp -p  P(x, +tan e )  ti x, 

or equivalently for any real c 

(xkx/ )=[ [ [+=dxl . .  --CO . [ + w d x L a ( c x , )  -m exp(cL-pP(x,+tan e)+cx,] )I-' 
In the following we shall show that 

which establishes the validity of (7). Our method is inspired from one technique of 
the proof used in De Coninck and Dunlop (1987) and De Coninck et al (1987). Let 
us first rewrite (10) in a more suitable form: 

(xkx/)=( [ dxk [ d x / q , ( x k ) q s ( x / ) f ~ , _ z ( x k + x / )  
) - I  

+m +a 

-X -X 

+XI +cc 

dxk [-m d x / x k x / q , ( x k ) q , ( x l ) f ~ , _ , ( x k + x / )  

where 

j # k , /  

Using a local form of the central limit theorem (the so-called Edgeworth expansion 
for a density) (Feller 1971), we get uniformly in x: 

where 

P3( x ) = ( x3 - 3x) 
6 a 3  

p4-3u4 l.4 P4( x)  = 7 (x3 - 3x) +- (x4 - 6x2 + 3) 
7 2 a  24u4 



Letter to the Editor L151 

1 +X 

pk = 5 x " q , ( x )  dx 7 (x )  = = exp( - tx') U2 = pz 
-22 J2 7 

provided that the fifth moment indeed exists (this is guaranteed by our hypotheses on 
P ) .  Since we have for densities of probability: 

a 

for any reals a > 0 and b, we get 

IL4-3w4-4p,x) ( 1 ) 
c+JLf,,(x) = .(A)( a J ~  1 + 

8 La4 
+ O  L3/' ' 

Using this result, we obtain for (xkx/) :  

where A and B are real constants. It remains to use the following inequality: 

1 - i y 2 ~ e x p ( - + y 2 ) ~  1 -fy'+iy4 

which holds for any real y ,  to obtain 

On the other hand, for k = 1, we have 

which leads to 

(Xi )=  d+o(;). 

Combining (1 1) and (12) we get 

which establishes the validity of (7) .  

Second step of the proof: It has been proved in De Coninck and Dunlop (1987) that 

p r ( e )  =-COS e log z(e) 
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where 
+m 

z (  e) = exp[-PP(x+tan e ) +  CG] dx L 
and ce has to be defined as the solution of 

+m 

xqB(x) dx = 0 L 
I, 

or, in other words, ce must verify 
+oc +m 

x exp[ -pP(x)  + c,+] dx = tan 0 exp[ - P P ( x )  + c&] dx. 

A simple derivation of z ( 0 )  with respect to 0 leads to the identity 

z '(e)=-c,(i+tan* e ) z ( e )  

p ( Y ( e 1 - c  = C;/COS e. (13) 

from which we easily get 

Since 

w', = 
) - I  

+at 

exp[ - pP(x +tan e) + c,+] dx (I-: 
(I:-: 

xz exp[ - p P (  x +tan 0)  + c,+] dx 

exp[-pP(x)+c&] dx -tan2 0 
) - I  

+a 

= 1 x2 exp[-PP(x) + c&] dx 
-at 

it is straightforward to show that 

w2,= (1+tan2 eyc; .  (14) 

It remains to compare (13) with (14) to achieve the proof of the theorem. 

Let us also stress that the validity of our theorem can be extended to more general 
models. The expression ( 6 )  holds whenever the probability density q e ( x )  admits 
moments up to sixth order. Using appropriate central limit theorems in a local form 
(Petrov 1975), it can be shown that discrete probability distributions may also be 
considered, like for instance the one which appears in the discrete SOS model. 

As a typical example of the importance of the anisotropic effect, we give hereafter 
P y ( 0 )  and P ( y ( 0 )  + y " (0 ) )  for the Gaussian continuous model. We have 

Pr(0) = f log (PJ l  r )  

This result clearly shows, once more, the importance of anisotropy within interface 
phenomena. It should also be noticed that this last expression is in perfect agreement 
with the vanishing of the width of the interface at T = 0. 

As a final remark, we would like to point out that our formula ( 6 )  is slightly different 
from the result of Akutsu and Akutsu (1986). The difference has to be found in the 
factor l/c0s3 0 which disappears if we consider the fluctuations of the interface 
perpendicularly to the straight line i tan 0 per unit length of the interface. 
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The authors acknowledge the referee for helpful remarks. They are grateful to the 
Centre de Physique ThCorique, Marseille and the CommunautC Frangaise de Belgique 
for financial support. 

Note added. After finishing this work we became aware of one result of Abraham (1987) establishing the 
validity of relation (4) within the two-dimensional Ising model. 
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